An Interactive, Web-Based High Performance Modeling Environment for Computational Epidemiology

Author:

Deodhar Suruchi1,Bisset Keith R.1,Chen Jiangzhuo1,Ma Yifei1,Marathe Madhav V.1

Affiliation:

1. NDSSL, Virginia Bioinformatics Institute, Virginia Tech

Abstract

We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly Web-based interface that allows analysts to access the models and the analytics backend remotely from a desktop or a mobile device. The environment is based on a loosely coupled service-oriented-architecture that allows analysts to explore various counterfactual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly difficult for noncomputational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause, and roll back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system’s capability and enhanced user productivity.

Funder

George Michael Fellowship

Division of Computer and Network Systems

Office of Cyberinfrastructure

Lawrence Livermore National Laboratory, Office of Science

Defense Threat Reduction Agency

National Institute of General Medical Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3