A visual modeling method for spatiotemporal and multidimensional features in epidemiological analysis: Applied COVID-19 aggregated datasets

Author:

Dong Yu,Liang Christy Jie,Chen Yi,Hua Jie

Abstract

AbstractThe visual modeling method enables flexible interactions with rich graphical depictions of data and supports the exploration of the complexities of epidemiological analysis. However, most epidemiology visualizations do not support the combined analysis of objective factors that might influence the transmission situation, resulting in a lack of quantitative and qualitative evidence. To address this issue, we developed a portrait-based visual modeling method called +msRNAer. This method considers the spatiotemporal features of virus transmission patterns and multidimensional features of objective risk factors in communities, enabling portrait-based exploration and comparison in epidemiological analysis. We applied +msRNAer to aggregate COVID-19-related datasets in New South Wales, Australia, combining COVID-19 case number trends, geo-information, intervention events, and expert-supervised risk factors extracted from local government area-based censuses. We perfected the +msRNAer workflow with collaborative views and evaluated its feasibility, effectiveness, and usefulness through one user study and three subject-driven case studies. Positive feedback from experts indicates that +msRNAer provides a general understanding for analyzing comprehension that not only compares relationships between cases in time-varying and risk factors through portraits but also supports navigation in fundamental geographical, timeline, and other factor comparisons. By adopting interactions, experts discovered functional and practical implications for potential patterns of long-standing community factors regarding the vulnerability faced by the pandemic. Experts confirmed that +msRNAer is expected to deliver visual modeling benefits with spatiotemporal and multidimensional features in other epidemiological analysis scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference89 articles.

1. Deodhar, S.; Bisset, K. R.; Chen, J. Z.; Ma, Y. F.; Marathe, M. V. An interactive, web-based high performance modeling environment for computational epidemiology. ACM Transactions on Management Information Systems Vol. 5, No. 2, Article No. 7, 2014.

2. Carroll, L. N.; Au, A. P.; Detwiler, L. T.; Fu, T. C.; Painter, I. S.; Abernethy, N. F. Visualization and analytics tools for infectious disease epidemiology: A systematic review. Journal of Biomedical Informatics Vol. 51, 287–298, 2014.

3. Christakis, N. A.; Fowler, J. H. Social network visualization in epidemiology. Norwegian Journal of Epidemiology Vol. 19, No. 1, 5–16, 2009.

4. Andrienko, G.; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S. I.; Jern, M.; Kraak, M. J.; Schumann, H.; Tominski, C. Space, time and visual analytics. International Journal of Geographical Information Science Vol. 24, No. 10, 1577–1600, 2010.

5. Angelini, M.; Cazzetta, G. Progressive visualization of epidemiological models for COVID-19 visual analysis. In: Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications. Lecture Notes in Computer Science, Vol. 12585. Reis, T.; Bornschlegl, M. X.; Angelini, M.; Hemmje, M. L. Eds. Springer Cham, 163–173, 2021.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3