Classifying pretended and evoked facial expressions of positive and negative affective states using infrared measurement of skin temperature

Author:

Khan Masood Mehmood1,Ward Robert D.2,Ingleby Michael2

Affiliation:

1. Curtin University of Technology, Perth, Western Australia

2. University of Huddersfield, Queensgate, England

Abstract

Earlier researchers were able to extract the transient facial thermal features from thermal infrared images (TIRIs) to make binary distinctions between the expressions of affective states. However, effective human-computer interaction would require machines to distinguish between the subtle facial expressions of affective states. This work, for the first time, attempts to use the transient facial thermal features for recognizing a much wider range of facial expressions. A database of 324 time-sequential, visible-spectrum, and thermal facial images was developed representing different facial expressions from 23 participants in different situations. A novel facial thermal feature extraction, selection, and classification approach was developed and invoked on various Gaussian mixture models constructed using: neutral and pretended happy and sad faces, faces with multiple positive and negative facial expressions, faces with neutral and six (pretended) basic facial expressions, and faces with evoked happiness, sadness, disgust, and anger. This work demonstrates that (1) infrared imaging can be used to observe the affective-state-specific facial thermal variations, (2) pixel-grey level analysis of TIRIs can help localise significant facial thermal feature points along the major facial muscles, and (3) cluster-analytic classification of transient thermal features can help distinguish between the facial expressions of affective states in an optimized eigenspace of input thermal feature vectors. The observed classification results exhibited influence of a Gaussian mixture model's structure on classifier-performance. The work also unveiled some pertinent aspects of future research on the use of facial thermal features in automated facial expression classification and affect recognition.

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smile analysis in dentistry and orthodontics – a review;Journal of the Royal Society of New Zealand;2024-02-19

2. Non-invasive infrared thermography technology for thermal comfort: A review;Building and Environment;2024-01

3. Thermodynamics-Inspired Multi-Feature Network for Infrared Small Target Detection;Remote Sensing;2023-09-26

4. Emotion AI at Work: Implications for Workplace Surveillance, Emotional Labor, and Emotional Privacy;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

5. Feature based analysis of thermal images for emotion recognition;Engineering Applications of Artificial Intelligence;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3