Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software

Author:

Flegar Goran1,Anzt Hartwig2,Cojean Terry3,Quintana-Ortí Enrique S.4

Affiliation:

1. Departamento de Ingeniería y Ciencia de Computadores, Universidad Jaime I, Spain

2. Karlsruhe Institute of Technology, Germany and University of Tennessee, Knoxville, Tennessee, USA

3. Karlsruhe Institute of Technology, Germany

4. Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, Spain

Abstract

The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific applications. In particular, the adoption of specialized hardware and data formats for low-precision arithmetic in high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the working precision in order to speed up the computations. For algorithms whose performance is bound by the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received considerable attention. One idea is to store an approximate operator–like a preconditioner–in lower than working precision hopefully without impacting the algorithm output. We realize the first high-performance implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready functionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the IEEE standard, but also customized formats which optimize the length of the exponent and significand to the characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that our implementation offers attractive runtime savings.

Funder

Helmholtz-Gemeinschaft

U.S. Department of Energy

Horizon 2020 Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference24 articles.

1. Ahmad Abdelfattah Hartwig Anzt Erik Boman Erin Carson Terry Cojean Jack Dongarra Mark Gates Thomas Gruetzmacher Nicholas J. Higham Sherry Li Neil Lindquist Yang Liu Jennifer Loe Piotr Luszczek Pratik Nayak Sri Pranesh Siva Rajamanickam Tobias Ribizel Barry Smith Kasia Swirydowicz Stephen Thomas Stanimire Tomov Yaohung Tsai Ichitaro Yamazaki and Urike Meier Yang. 2020. A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic. SLATE Working Notes 15 ICL-UT-20-08. Ahmad Abdelfattah Hartwig Anzt Erik Boman Erin Carson Terry Cojean Jack Dongarra Mark Gates Thomas Gruetzmacher Nicholas J. Higham Sherry Li Neil Lindquist Yang Liu Jennifer Loe Piotr Luszczek Pratik Nayak Sri Pranesh Siva Rajamanickam Tobias Ribizel Barry Smith Kasia Swirydowicz Stephen Thomas Stanimire Tomov Yaohung Tsai Ichitaro Yamazaki and Urike Meier Yang. 2020. A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic. SLATE Working Notes 15 ICL-UT-20-08.

2. Towards Continuous Benchmarking

3. Ginkgo: A high performance numerical linear algebra library

4. Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3