Parallelization of the Fluid Behavior Modeling Algorithm in Real Time

Author:

Mochurad L.I.,Dereviannyi A.A.,Tkachuk O.R.

Abstract

A parallel algorithm based on Compute Unified Device Architecture (CUDA) technology is proposed to accelerate fluid behavior simulation and real-time decision making capability. Three main steps were highlighted: implementation of the fluid flow simulation method, distri-bution of work between CUDA threads, and collection of results. A software product was de-veloped to analyze the obtained results. As a result, it was found that the minimum acceptable refresh rate of the simulation environment is achieved on an environment with a size of 512  512 and is an average of 51.54 FPS (number of frames per second) for both states (quiet and ac-tive simulation). An analysis of literary sources was carried out, where the current state of this scientific problem is outlined and the advantages of the proposed approach are indicated. Among the simulation methods, the method using the Navier―Strokes equation for the flow of incompressible matter was chosen because it is simple and has good possibilities for parallelization.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3