A Siamese Inverted Residuals Network Image Steganalysis Scheme based on Deep Learning

Author:

Li Hao1ORCID,Wang Jinwei2ORCID,Xiong Neal3ORCID,Zhang Yi1ORCID,Vasilakos Athanasios V.4ORCID,Luo Xiangyang1ORCID

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, China

2. Nanjing University of Information Science & Technology, China

3. Sul Ross State University, USA

4. University of Agder, Norway and Fuzhou University, China

Abstract

With the rapid proliferation of urbanization, massive data in social networks are collected and aggregated in real time, making it possible for criminals to use images as a cover to spread secret information on the Internet. How to determine whether these images contain secret information is a huge challenge for multimedia computing security. The steganalysis method based on deep learning can effectively judge whether the pictures transmitted on the Internet in urban scenes contain secret information, which is of great significance to safeguarding national and social security. Image steganalysis based on deep learning has powerful learning ability and classification ability, and its detection accuracy of steganography images has surpassed that of traditional steganalysis based on manual feature extraction. In recent years, it has become a hot topic of the information hiding technology. However, the detection accuracy of existing deep learning based steganalysis methods still needs to be improved, especially when detecting arbitrary-size and multi-source images, their detection efficientness is easily affected by cover mismatch. In this manuscript, we propose a steganalysis method based on Inverse Residuals structured Siamese network (abbreviated as SiaIRNet method, Sia mese- I nverted- R esiduals- Net work Based method). The SiaIRNet method uses a siamese convolutional neural network (CNN) to obtain the residual features of subgraphs, including three stages of preprocessing, feature extraction, and classification. Firstly, a preprocessing layer with high-pass filters combined with depth-wise separable convolution is designed to more accurately capture the correlation of residuals between feature channels, which can help capture rich and effective residual features. Then, a feature extraction layer based on the Inverse Residuals structure is proposed, which improves the ability of the model to obtain residual features by expanding channels and reusing features. Finally, a fully connected layer is used to classify the cover image and the stego image features. Utilizing three general datasets, BossBase-1.01, BOWS2, and ALASKA#2, as cover images, a large number of experiments are conducted comparing with the state-of-the-art steganalysis methods. The experimental results show that compared with the classical SID method and the latest SiaStegNet method, the detection accuracy of the proposed method for 15 arbitrary-size images is improved by 15.96% and 5.86% on average, respectively, which verifies the higher detection accuracy and better adaptability of the proposed method to multi-source and arbitrary-size images in urban scenes.

Funder

National Natural Science Foundation of China

the Zhongyuan Science and Technology Innovation Leading Talent Project, China

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference44 articles.

1. Structured Pruning of Deep Convolutional Neural Networks

2. Patrick Bas, Tomáš Filler, and Tomáš Pevnỳ. 2011. Break our steganographic system: The ins and outs of organizing BOSS. In International Workshop on Information Hiding. Springer, 59–70.

3. Patrick Bas and Teddy Furon. 2022. BOWS-2. Retrieved February 17, 2022 from http://bows2.ec-lille.fr/.

4. Deep Residual Network for Steganalysis of Digital Images

5. Steganalysis based on deep learning:A review;Chen Junfu;J. Softw.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3