Power Converter Circuit Design Automation Using Parallel Monte Carlo Tree Search

Author:

Fan Shaoze1ORCID,Zhang Shun2ORCID,Liu Jianbo3ORCID,Cao Ningyuan3ORCID,Guo Xiaoxiao4ORCID,Li Jing1ORCID,Zhang Xin5ORCID

Affiliation:

1. New Jersey Institute of Technology, Newark, NJ, USA

2. IBM T. J. Watson Research Center, Cambridge, MA, USA

3. University of Notre Dame, Notre Dame, IN, USA

4. Meta Platforms Inc., Menlo Park, CA, USA

5. IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Abstract

The tidal waves of modern electronic/electrical devices have led to increasing demands for ubiquitous application-specific power converters. A conventional manual design procedure of such power converters is computation- and labor-intensive, which involves selecting and connecting component devices, tuning component-wise parameters and control schemes, and iteratively evaluating and optimizing the design. To automate and speed up this design process, we propose an automatic framework that designs custom power converters from design specifications using Monte Carlo Tree Search. Specifically, the framework embraces the upper-confidence-bound-tree (UCT), a variant of Monte Carlo Tree Search, to automate topology space exploration with circuit design specification-encoded reward signals. Moreover, our UCT-based approach can exploit small offline data via the specially designed default policy and can run in parallel to accelerate topology space exploration. Further, it utilizes a hybrid circuit evaluation strategy to substantially reduce design evaluation costs. Empirically, we demonstrated that our framework could generate energy-efficient circuit topologies for various target voltage conversion ratios. Compared to existing automatic topology optimization strategies, the proposed method is much more computationally efficient—the sequential version can generate topologies with the same quality while being up to 67% faster. The parallelization schemes can further achieve high speedups compared to the sequential version.

Funder

Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy

U.S. National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference49 articles.

1. Optimization and Quality Estimation of Circuit Design via Random Region Covering Method

2. Amine Bourki, Guillaume Chaslot, Matthieu Coulm, Vincent Danjean, Hassen Doghmen, Jean-Baptiste Hoock, Thomas Hérault, Arpad Rimmel, Fabien Teytaud, Olivier Teytaud, et al. 2010. Scalability and parallelization of Monte-Carlo tree search. In Proceedings of the International Conference on Computers and Games. Springer, 48-58.

3. A Survey of Monte Carlo Tree Search Methods

4. Tristan Cazenave and Nicolas Jouandeau. 2007. On the parallelization of UCT. In Proceedings of the Computer Games Workshop.

5. BAG2: A process-portable framework for generator-based AMS circuit design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3