Coverage Preservation with Rapid Forwarding in Energy-Harvesting Wireless Sensor Networks for Critical Rare Events

Author:

Harrison David C.1,Seah Winston K. G.1,Rayudu Ramesh1

Affiliation:

1. Victoria University of Wellington, Wellington, New Zealand

Abstract

Wireless sensor networks for rarely occurring critical events must maintain sensing coverage and low-latency network connectivity to ensure event detection and subsequent rapid propagation of notification messages. Few algorithms have been proposed that address both coverage and forwarding and those that do are either unconcerned with rapid propagation or are not optimised to handle the constant changes in topology observed in duty-cycled networks. This article proposes an algorithm for Coverage Preservation with Rapid Forwarding (CPRF). The algorithm is shown to deliver perfect coverage maintenance and low-latency guaranteed message propagation whilst allowing stored-charge conservation via collaborative duty cycling in energy-harvesting networks. Favourable comparisons are made against established and recently proposed algorithms in both sparse planned and dense random distributions. Further, an implementation for commercially available wireless sensing devices is evaluated for detection and notification of damage to highway light poles caused by vortex shedding.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3