Abstract
Wireless sensor and robot networks (WSRNs) often work in complex and dangerous environments that are subject to many constraints. For obtaining a better monitoring performance, it is necessary to deploy different types of sensors for various complex environments and constraints. The traditional event-driven deployment algorithm is only applicable to a single type of monitoring scenario, so cannot effectively adapt to different types of monitoring scenarios at the same time. In this paper, a multi-constrained event-driven deployment model is proposed based on the maximum entropy function, which transforms the complex event-driven deployment problem into two continuously differentiable single-objective sub-problems. Then, a collaborative neural network (CONN) event-driven deployment algorithm is proposed based on neural network methods. The CONN event-driven deployment algorithm effectively solves the problem that it is difficult to obtain a large amount of sensor data and environmental information in a complex and dangerous monitoring environment. Unlike traditional deployment methods, the CONN algorithm can adaptively provide an optimal deployment solution for a variety of complex monitoring environments. This greatly reduces the time and cost involved in adapting to different monitoring environments. Finally, a large number of experiments verify the performance of the CONN algorithm, which can be adapted to a variety of complex application scenarios.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Public Welfare Technology Research Project of Zhejiang Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献