Affiliation:
1. Università degli Studi di Milano
Abstract
Quantum computing is a prolific research area, halfway between physics and computer science [27, 29, 52]. Most likely, its origins may be dated back to 70's, when some works on quantum information began to appear (see, e.g., [34, 37]). In early 80's, R.P. Feynman suggested that the computational power of quantum mechanical processes might be beyond that of traditional computation models [25]. Almost at the same time, P. Benioff already proved that such processes are at least as powerful as Turing machines [9]. In 1985, D. Deutsch [22] proposed the notion of a quantum Turing machine as a physically realizable model for a quantum computer. From the point of view of structural complexity, E. Bernstein and U. Vazirani introduced in [20] the class BQP of problems solvable in polynomial time on quantum Turing machines, focusing attention on relations with the corresponding deterministic and probabilistic classes P and BPP, respectively. Several works in the literature explored classical issues in complexity theory from the quantum paradigm perspective (see, e.g., [7, 60, 61]).
Publisher
Association for Computing Machinery (ACM)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reversible Computations of One-Way Counter Automata;RAIRO - Theoretical Informatics and Applications;2024
2. Reversible Computations of One-Way Counter Automata;Electronic Proceedings in Theoretical Computer Science;2022-08-27
3. Mirrors and Memory in Quantum Automata;Quantitative Evaluation of Systems;2022