Outlier detection for high dimensional data

Author:

Aggarwal Charu C.1,Yu Philip S.1

Affiliation:

1. IBM T. J. Watson Research Center, Yorktown Heights, NY

Abstract

The outlier detection problem has important applications in the field of fraud detection, network robustness analysis, and intrusion detection. Most such applications are high dimensional domains in which the data can contain hundreds of dimensions. Many recent algorithms use concepts of proximity in order to find outliers based on their relationship to the rest of the data. However, in high dimensional space, the data is sparse and the notion of proximity fails to retain its meaningfulness. In fact, the sparsity of high dimensional data implies that every point is an almost equally good outlier from the perspective of proximity-based definitions. Consequently, for high dimensional data, the notion of finding meaningful outliers becomes substantially more complex and non-obvious. In this paper, we discuss new techniques for outlier detection which find the outliers by studying the behavior of projections from the data set.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 352 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outlier detection for heterogeneous data via fuzzy β covering;Expert Systems with Applications;2024-10

2. On Combining Instance Selection and Discretisation: A Comparative Study of Two Combination Orders;Journal of Information & Knowledge Management;2024-08-17

3. Context discovery for anomaly detection;International Journal of Data Science and Analytics;2024-06-18

4. Chemoinformatic regression methods and their applicability domain;Molecular Informatics;2024-05-28

5. Electricity Theft Detection in Smart Grids Using Sarimax and OCR;International Journal of Advanced Research in Science, Communication and Technology;2024-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3