Chemoinformatic regression methods and their applicability domain

Author:

Dutschmann Thomas‐Martin1ORCID,Schlenker Valerie1,Baumann Knut1

Affiliation:

1. Institute of Medicinal and Pharmaceutical Chemistry University of Technology Braunschweig 38106 Braunschweig Germany

Abstract

AbstractThe growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built‐in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3