Finding Robust Itemsets under Subsampling

Author:

Tatti Nikolaj1,Moerchen Fabian2,Calders Toon3

Affiliation:

1. HIIT, Aalto University, KU Leuven and University of Antwerp, Espoo, Finland

2. Siemens Corporation USA

3. Université Libre de Bruxellés and Eindhoven University of Technology, Brussels, Belgium

Abstract

Mining frequent patterns is plagued by the problem of pattern explosion, making pattern reduction techniques a key challenge in pattern mining. In this article we propose a novel theoretical framework for pattern reduction by measuring the robustness of a property of an itemset such as closedness or nonderivability. The robustness of a property is the probability that this property holds on random subsets of the original data. We study four properties, namely an itemset being closed, free, non-derivable, or totally shattered, and demonstrate how to compute the robustness analytically without actually sampling the data. Our concept of robustness has many advantages: Unlike statistical approaches for reducing patterns, we do not assume a null hypothesis or any noise model and, in contrast to noise-tolerant or approximate patterns, the robust patterns for a given property are always a subset of the patterns with this property. If the underlying property is monotonic then the measure is also monotonic, allowing us to efficiently mine robust itemsets. We further derive a parameter-free technique for ranking itemsets that can be used for top- k approaches. Our experiments demonstrate that we can successfully use the robustness measure to reduce the number of patterns and that ranking yields interesting itemsets.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference36 articles.

1. Mining association rules between sets of items in large databases

2. A. Asuncion and D. Newman. 2007. UCI machine learning repository. http://mlearn.ics.uci.edu/MLRepository.html. A. Asuncion and D. Newman. 2007. UCI machine learning repository. http://mlearn.ics.uci.edu/MLRepository.html.

3. Beyond market baskets

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3