Knowledge cores in large formal contexts

Author:

Hanika Tom,Hirth JohannesORCID

Abstract

AbstractKnowledge computation tasks, such as computing a base of valid implications, are often infeasible for large data sets. This is in particular true when deriving canonical bases in formal concept analysis (FCA). Therefore, it is necessary to find techniques that on the one hand reduce the data set size, but on the other hand preserve enough structure to extract useful knowledge. Many successful methods are based on random processes to reduce the size of the investigated data set. This, however, makes them hardly interpretable with respect to the discovered knowledge. Other approaches restrict themselves to highly supported subsets and omit rare and (maybe) interesting patterns. An essentially different approach is used in network science, called k-cores. These cores are able to reflect rare patterns, as long as they are well connected within the data set. In this work, we study k-cores in the realm of FCA by exploiting the natural correspondence of bi-partite graphs and formal contexts. This structurally motivated approach leads to a comprehensible extraction of knowledge cores from large formal contexts.

Funder

Universität Kassel

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence

Reference34 articles.

1. Ahmed, A., Batagelj, V., Fu, X., Hong, S.H., Merrick, D., Mrvar, A.: Visualisation and analysis of the internet movie database. In: S.H. Hong, K.L. Ma (eds.) APVIS, pp. 17–24. IEEE Computer Society. http://dblp.uni-trier.de/db/conf/apvis/apvis2007.html#AhmedBFHMM07 (2007)

2. Andrews, S., Orphanides, C.: Analysis of large data sets using formal concept lattices. In: M. Kryszkiewicz, S.A. Obiedkov (eds.) CLA, vol. 672, pp. 104–115. CEUR-WS.org. http://dblp.uni-trier.de/db/conf/cla/cla2010.html#AndrewsO10 (2010)

3. Aswanikumar, C., Srinivas, S.: Concept lattice reduction using fuzzy k-means clustering. Expert Syst. Appl. 37 (3), 2696–2704 (2010). http://dblp.uni-trier.de/db/journals/eswa/eswa37.html#AswanikumarS10

4. Borchmann, D., Hanika, T.: Some experimental results on randomly generating formal contexts. In: M. Huchard, S. Kuznetsov (eds.) CLA, CEUR Workshop Proceedings, vol. 1624, pp. 57–69. CEUR-WS.org. http://dblp.uni-trier.de/db/conf/cla/cla2016.html#BorchmannH16 (2016)

5. Codocedo, V., Taramasco, C., Astudillo, H.: Cheating to achieve formal concept analysis over a large formal context. In: A. Napoli, V. Vychodil (eds.) CLA, vol. 959, pp. 349–362. CEUR-WS.org. http://dblp.uni-trier.de/db/conf/cla/cla2011.html#CodocedoTA11 (2011)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ordinal motifs in lattices;Information Sciences;2024-02

2. Conceptual views on tree ensemble classifiers;International Journal of Approximate Reasoning;2023-08

3. Automatic Textual Explanations of Concept Lattices;Graph-Based Representation and Reasoning;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3