Input Method for Human Translators

Author:

Huang Guoping1ORCID,Zhang Jiajun1,Zhou Yu1,Zong Chengqing2

Affiliation:

1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Tencent AI Lab, Shenzhen

2. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Nanshan District, Shenzhen

Abstract

Computer-aided translation (CAT) systems are the most popular tool for helping human translators efficiently perform language translation. To further improve the translation efficiency, there is an increasing interest in applying machine translation (MT) technology to upgrade CAT. To thoroughly integrate MT into CAT systems, in this article, we propose a novel approach: a new input method that makes full use of the knowledge adopted by MT systems, such as translation rules, decoding hypotheses, and n-best translation lists. The proposed input method contains two parts: a phrase generation model, allowing human translators to type target sentences quickly, and an n-gram prediction model, helping users choose perfect MT fragments smoothly. In addition, to tune the underlying MT system to generate the input method preferable results, we design a new evaluation metric for the MT system. The proposed input method integrates MT effectively and imperceptibly, and it is particularly suitable for many target languages with complex characters, such as Chinese and Japanese. The extensive experiments demonstrate that our method saves more than 23% in time and over 42% in keystrokes, and it also improves the translation quality by more than 5 absolute BLEU scores compared with the strong baseline, i.e., post-editing using Google Pinyin.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3