Statistical Approaches to Computer-Assisted Translation

Author:

Barrachina Sergio12345,Bender Oliver12345,Casacuberta Francisco12345,Civera Jorge12345,Cubel Elsa12345,Khadivi Shahram12345,Lagarda Antonio12345,Ney Hermann12345,Tomás Jesús12345,Vidal Enrique12345,Vilar Juan-Miguel12345

Affiliation:

1. * Departament d'Enginyeria i Ciències dels Computadors, Universitat Jaume I, 12071 Castelló de la Plana, Spain.

2. ** Lehrstuhl für Informatik VI, RWTH Aachen University of Technology, D-52056 Aachen, Germany.

3. † Institut Tecnològic d'Informàtica, Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, 46071 València, Spain.

4. ‡ Institut Tecnològic d'Informàtica, Departament de Comunicacions, Universitat Politècnica de València, 46071 València, Spain.

5. § Departament de Llenguatges i Sistemes Informàtics, Universitat Jaume I, 12071 Castelló de la Plana, Spain.

Abstract

Current machine translation (MT) systems are still not perfect. In practice, the output from these systems needs to be edited to correct errors. A way of increasing the productivity of the whole translation process (MT plus human work) is to incorporate the human correction activities within the translation process itself, thereby shifting the MT paradigm to that of computer-assisted translation. This model entails an iterative process in which the human translator activity is included in the loop: In each iteration, a prefix of the translation is validated (accepted or amended) by the human and the system computes its best (or n-best) translation suffix hypothesis to complete this prefix. A successful framework for MT is the so-called statistical (or pattern recognition) framework. Interestingly, within this framework, the adaptation of MT systems to the interactive scenario affects mainly the search process, allowing a great reuse of successful techniques and models. In this article, alignment templates, phrase-based models, and stochastic finite-state transducers are used to develop computer-assisted translation systems. These systems were assessed in a European project (TransType2) in two real tasks: The translation of printer manuals; manuals and the translation of the Bulletin of the European Union. In each task, the following three pairs of languages were involved (in both translation directions): English-Spanish, English-German, and English-French.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. hmCodeTrans: Human–Machine Interactive Code Translation;IEEE Transactions on Software Engineering;2024-05

2. An Energy-based Model for Word-level AutoCompletion in Computer-aided Translation;Transactions of the Association for Computational Linguistics;2024

3. Assessing MT with measures of PE effort;Ampersand;2023-12

4. HMPT: a human–machine cooperative program translation method;Automated Software Engineering;2023-08-21

5. Interactive machine translation for the language modernization and spelling normalization of historical documents;Pattern Analysis and Applications;2023-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3