Leak pruning

Author:

Bond Michael D.1,McKinley Kathryn S.1

Affiliation:

1. The University of Texas at Austin, Austin, TX, USA

Abstract

Managed languages improve programmer productivity with type safety and garbage collection, which eliminate memory errors such as dangling pointers, double frees, and buffer overflows. However, because garbage collection uses reachability to over-approximate live objects, programs may still leak memory if programmers forget to eliminate the last reference to an object that will not be used again. Leaks slow programs by increasing collector workload and frequency. Growing leaks eventually crash programs. This paper introduces leak pruning, which keeps programs running by predicting and reclaiming leaked objects at run time. It predicts dead objects and reclaims them based on observing data structure usage patterns. Leak pruning preserves semantics because it waits for heap exhaustion before reclaiming objects and poisons references to objects it reclaims. If the program later tries to access a poisoned reference, the virtual machine (VM) throws an error. We show leak pruning has low overhead in a Java VM and evaluate it on 10 leaking programs. Leak pruning does not help two programs, executes five substantial programs 1.6-81X longer, and executes three programs, including a leak in Eclipse, for at least 24 hours. In the worst case, leak pruning defers fatal errors. In the best case, it keeps leaky programs running with preserved semantics and consistent throughput.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient heap monitoring tool for memory leak detection and root-cause analysis;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

2. Risk-Aware Leak Detection at Binary Level;2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC);2020-12

3. Improving program locality in the GC using hotness;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

4. Do Memories Haunt You? An Automated Black Box Testing Approach for Detecting Memory Leaks in Android Apps;IEEE Access;2020

5. Memory and resource leak defects and their repairs in Java projects;Empirical Software Engineering;2019-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3