Incremental Matrix Co-factorization for Recommender Systems with Implicit Feedback
Author:
Affiliation:
1. LIAAD - INESC TEC, Porto, Portugal
2. LIAAD - INESC TEC; FCUP, University of Porto, Porto, Portugal
Funder
European Regional Development Fund (ERDF)
Portuguese Foundation for Science and Technology (FCT)
Publisher
ACM Press
Reference30 articles.
1. Robert M. Bell and Yehuda Koren. 2007. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on. IEEE, 43--52.
2. Òscar Celma. 2010. Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer. I--XVI, 1--194 pages.
3. Badrish Chandramouli, Justin J Levandoski, Ahmed Eldawy, and Mohamed F Mokbel. 2011. StreamRec: a real-time recommender system. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. ACM, 1243--1246.
4. Tianqi Chen, Zhao Zheng, Qiuxia Lu, Weinan Zhang, and Yong Yu. 2011. Feature-based matrix factorization. Technical Report. Apex Data & Knowledge Managment Lab, Shanghai Jiao Tong University.
5. Marcos Aurélio Domingues, Al'ıpio Mário Jorge, and Carlos Soares. 2013. Dimensions as virtual items: Improving the predictive ability of top-n recommender systems. Information Processing & Management Vol. 49, 3 (2013), 698--720.
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Granularity Attention Mechanism for Recommendation Systems Based on Item Descriptions and Reviews;Modeling and Simulation;2024
2. Precision marketing for financial industry using a PU-learning recommendation method;Journal of Business Research;2023-05
3. Scheduling on a budget: Avoiding stale recommendations with timely updates;Machine Learning with Applications;2023-03
4. A Survey on Session-based Recommender Systems;ACM Computing Surveys;2022-09-30
5. Incremental trust-aware matrix factorization for recommender systems: towards Green AI;Applied Intelligence;2022-09-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3