A Survey on Session-based Recommender Systems

Author:

Wang Shoujin1,Cao Longbing2,Wang Yan1,Sheng Quan Z.1,Orgun Mehmet A.1,Lian Defu3

Affiliation:

1. Macquarie University, Australia

2. University of Technology Sydney, Australia

3. University of Science and Technology of China, China

Abstract

Recommender systems (RSs) have been playing an increasingly important role for informed consumption, services, and decision-making in the overloaded information era and digitized economy. In recent years, session-based recommender systems (SBRSs) have emerged as a new paradigm of RSs. Different from other RSs such as content-based RSs and collaborative filtering-based RSs that usually model long-term yet static user preferences, SBRSs aim to capture short-term but dynamic user preferences to provide more timely and accurate recommendations sensitive to the evolution of their session contexts. Although SBRSs have been intensively studied, neither unified problem statements for SBRSs nor in-depth elaboration of SBRS characteristics and challenges are available. It is also unclear to what extent SBRS challenges have been addressed and what the overall research landscape of SBRSs is. This comprehensive review of SBRSs addresses the above aspects by exploring in depth the SBRS entities (e.g., sessions), behaviours (e.g., users’ clicks on items), and their properties (e.g., session length). We propose a general problem statement of SBRSs, summarize the diversified data characteristics and challenges of SBRSs, and define a taxonomy to categorize the representative SBRS research. Finally, we discuss new research opportunities in this exciting and vibrant area.

Funder

Australian Research Council Discovery

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 250 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3