Detecting social interactions of the elderly in a nursing home environment

Author:

Chen Datong1,Yang Jie1,Malkin Robert1,Wactlar Howard D.1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

Abstract

Social interaction plays an important role in our daily lives. It is one of the most important indicators of physical or mental changes in aging patients. In this article, we investigate the problem of detecting social interaction patterns of patients in a skilled nursing facility using audio/visual records. Our studies consist of both a “Wizard of Oz” style study and an experimental study of various sensors and detection models for detecting and summarizing social interactions among aging patients and caregivers. We first simulate plausible sensors using human labeling on top of audio and visual data collected from a skilled nursing facility. The most useful sensors and robust detection models are determined using the simulated sensors. We then present the implementation of some real sensors based on video and audio analysis techniques and evaluate the performance of these implementations in detecting interactions. We conclude the article with discussions and future work.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3