Affiliation:
1. University of California - Los Angeles
2. JIXIE EFFECTS
3. University of Science and Technology of China
4. University of Pennsylvania
Abstract
We present novel techniques for simulating and visualizing ductile fracture with the Material Point Method (MPM). We utilize traditional particle-based MPM [Stomakhin et al. 2013; Sulsky et al. 1994] as well as the Lagrangian energy formulation of [Jiang et al. 2015] that utilizes a tetrahedron mesh, rather than particle-based estimation of the deformation gradient and potential energy. We model failure and fracture via elastoplasticity with damage. Material is elastic until its deformation exceeds a Rankine or von Mises yield condition, at which point we use a softening model that shrinks the yield surface until a damage threshold is reached. Once damaged, the material Lamé coefficients are modified to represent failed material. We design visualization techniques for rendering the boundary of the material and its intersections with evolving crack surfaces. Our approach uses a simple and efficient element splitting strategy for tetrahedron meshes to represent crack surfaces that utilizes an extrapolation technique based on the MPM simulation. For traditional particle-based MPM we use an initial Delaunay tetrahedralization to connect randomly initialized MPM particles. Our visualization technique is a post-process and can be run after the MPM simulation for efficiency. We demonstrate our method with a number of challenging simulations of ductile failure with considerable and persistent self-contact.
Funder
NSF CCF
DOD
Intel STC-Visual Computing Grant
ONR
Adobe Inc.
Publisher
Association for Computing Machinery (ACM)
Subject
General Arts and Humanities
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献