A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase Transition

Author:

Tu Zaili1ORCID,Li Chen1ORCID,Zhao Zipeng1ORCID,Liu Long1ORCID,Wang Chenhui1ORCID,Wang Changbo1ORCID,Qin Hong2ORCID

Affiliation:

1. East China Normal University, China

2. Stony Brook University (SUNY at Stony Brook), USA

Abstract

Recent years have witnessed the rapid deployment of numerous physics-based modeling and simulation algorithms and techniques for fluids, solids, and their delicate coupling in computer animation. However, it still remains a challenging problem to model the complex elastic-viscoplastic behaviors during fluid–solid phase transitions and facilitate their seamless interactions inside the same framework. In this article, we propose a practical method capable of simulating granular flows, viscoplastic liquids, elastic-plastic solids, rigid bodies, and interacting with each other, to support novel phenomena all heavily involving realistic phase transitions, including dissolution, melting, cooling, expansion, shrinking, and so on. At the physics level, we propose to combine and morph von Mises with Drucker–Prager and Cam–Clay yield models to establish a unified phase-field-driven EVP model, capable of describing the behaviors of granular, elastic, plastic, viscous materials, liquid, non-Newtonian fluids, and their smooth evolution. At the numerical level, we derive the discretization form of Cahn–Hilliard and Allen–Cahn equations with the material point method to effectively track the phase-field evolution, so as to avoid explicit handling of the boundary conditions at the interface. At the application level, we design a novel heuristic strategy to control specialized behaviors via user-defined schemes, including chemical potential, density curve, and so on. We exhibit a set of numerous experimental results consisting of challenging scenarios to validate the effectiveness and versatility of the new unified approach. This flexible and highly stable framework, founded upon the unified treatment and seamless coupling among various phases, and effective numerical discretization, has its unique advantage in animation creation toward novel phenomena heavily involving phase transitions with artistic creativity and guidance.

Funder

National Natural Science Foundation of China NSFC

Shanghai Science and Technology Commission SSTC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3