Quantifying Visual Abstraction Quality for Computer-Generated Illustrations

Author:

Spicker Marc1ORCID,Götz-Hahn Franz1,Lindemeier Thomas1,Saupe Dietmar1,Deussen Oliver1

Affiliation:

1. University of Konstanz, Konstanz, Germany

Abstract

We investigate how the perceived abstraction quality of computer-generated illustrations is related to the number of primitives (points and small lines) used to create them. Since it is difficult to find objective functions that quantify the visual quality of such illustrations, we propose an approach to derive perceptual models from a user study. By gathering comparative data in a crowdsourcing user study and employing a paired comparison model, we can reconstruct absolute quality values. Based on an exemplary study for stippling, we show that it is possible to model the perceived quality of stippled representations based on the properties of an input image. The generalizability of our approach is demonstrated by comparing models for different stippling methods. By showing that our proposed approach also works for small lines, we demonstrate its applicability toward quantifying different representational drawing elements. Our results can be related to Weber--Fechner’s law from psychophysics and indicate a logarithmic relationship between number of rendering primitives in an illustration and the perceived abstraction quality thereof.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The State of Pilot Study Reporting in Crowdsourcing: A Reflection on Best Practices and Guidelines;Proceedings of the ACM on Human-Computer Interaction;2024-04-17

2. Synthesis and Validation of Virtual Woodcuts Generated with Reaction-Diffusion;Communications in Computer and Information Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3