1. Roy Assaf , Ioana Giurgiu , Frank Bagehorn , and Anika Schumann . 2019 . MTEX-CNN: Multivariate Time Series EXplanations for Predictions with Convolutional Neural Networks. In 2019 IEEE International Conference on Data Mining (ICDM). 952--957 . https://doi.org/10.1109/ICDM.2019.00106 Roy Assaf, Ioana Giurgiu, Frank Bagehorn, and Anika Schumann. 2019. MTEX-CNN: Multivariate Time Series EXplanations for Predictions with Convolutional Neural Networks. In 2019 IEEE International Conference on Data Mining (ICDM). 952--957. https://doi.org/10.1109/ICDM.2019.00106
2. Anthony Bagnall , Jason Lines , Aaron Bostrom, James Large, and Eamonn Keogh. 2016 . The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov ., Vol. 31 (2016). Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. 2016. The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov., Vol. 31 (2016).
3. Anthony Bagnall , Jason Lines , Jon Hills, and Aaron Bostrom. 2015 . Time-Series Classification with COTE : The Collective of Transformation-Based Ensembles. IEEE TKDE , Vol. 27 (2015). Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. 2015. Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles. IEEE TKDE, Vol. 27 (2015).
4. Data Series Management (Dagstuhl Seminar 19282);Bagnall J.;Dagstuhl Reports,2019
5. Paul Boniol , Michele Linardi , Federico Roncallo , Themis Palpanas , Mohammed Meftah , and Emmanuel Remy . 2021 a. Unsupervised and Scalable Subsequence Anomaly Detectionin Large Data Series. VLDBJ ( 2021 ). Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021 a. Unsupervised and Scalable Subsequence Anomaly Detectionin Large Data Series. VLDBJ (2021).