TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning

Author:

Saha Swapnil Sayan1,Sandha Sandeep Singh2,Aggarwal Mohit3,Wang Brian1,Han Liying1,Briseno Julian de Gortari1,Srivastava Mani1

Affiliation:

1. University of California - Los Angeles, USA

2. Abacus.AI, USA

3. BrightNight, USA

Abstract

Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and remote applications. However, deploying interpretable artificial intelligence systems that can perform high-level symbolic reasoning and satisfy the underlying system rules and physics within the tight platform resource constraints is challenging. In this paper, we introduce TinyNS , the first platform-aware neurosymbolic architecture search framework for joint optimization of symbolic and neural operators. TinyNS provides recipes and parsers to automatically write microcontroller code for five types of neurosymbolic models, combining the context awareness and integrity of symbolic techniques with the robustness and performance of machine learning models. TinyNS uses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric, and categorical search spaces to find the best synergy of symbolic code and neural networks within the hardware resource budget. To guarantee deployability, TinyNS talks to the target hardware during the optimization process. We showcase the utility of TinyNS by deploying microcontroller-class neurosymbolic models through several case studies. In all use cases, TinyNS outperforms purely neural or purely symbolic approaches while guaranteeing execution on real hardware.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference179 articles.

1. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , et al. 2016 . {TensorFlow}: a system for {Large-Scale} machine learning . In 12th USENIX symposium on operating systems design and implementation (OSDI 16) . 265–283. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16). 265–283.

2. OutlierNets: Highly Compact Deep Autoencoder Network Architectures for On-Device Acoustic Anomaly Detection

3. Kareem Ahmed , Tao Li , Thy Ton , Quan Guo , Kai-Wei Chang , Parisa Kordjamshidi , Vivek Srikumar , Guy Van den Broeck, and Sameer Singh . 2022 . PYLON : A PyTorch framework for learning with constraints. In NeurIPS 2021 Competitions and Demonstrations Track. PMLR , 319–324. Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck, and Sameer Singh. 2022. PYLON: A PyTorch framework for learning with constraints. In NeurIPS 2021 Competitions and Demonstrations Track. PMLR, 319–324.

4. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications

5. Neuro-symbolic representation learning on biological knowledge graphs

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3