1. A review on tinyml: State-of-the-art and prospects;Ray;J. King Saud Univ.-Comput. Inf. Sci.,2022
2. Banbury, C., Reddi, V.J., Torelli, P., Holleman, J., Jeffries, N., Kiraly, C., Montino, P., Kanter, D., Ahmed, S., and Pau, D. (December, January 28). MLCommons tiny benchmark. Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, Virtual.
3. Shawi, R.E., Maher, M., and Sakr, S. (2019). Automated Machine Learning: State-of-The-Art and Open Challenges. arXiv.
4. Wistuba, M., Rawat, A., and Pedapati, T. (2019). A Survey on Neural Architecture Search. arXiv.
5. Nayman, N., Aflalo, Y., Noy, A., and Zelnik-Manor, L. (2021, January 18–24). HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search. Proceedings of the International Conference on Machine Learning ICML, Virtual.