Green-Marl

Author:

Hong Sungpack1,Chafi Hassan2,Sedlar Edic3,Olukotun Kunle1

Affiliation:

1. Stanford University, Palo Alto, CA, USA

2. Stanford University & Oracle Labs, Palo Alto, CA, USA

3. Oracle Labs, Belmont, CA, USA

Abstract

The increasing importance of graph-data based applications is fueling the need for highly efficient and parallel implementations of graph analysis software. In this paper we describe Green-Marl, a domain-specific language (DSL) whose high level language constructs allow developers to describe their graph analysis algorithms intuitively, but expose the data-level parallelism inherent in the algorithms. We also present our Green-Marl compiler which translates high-level algorithmic description written in Green-Marl into an efficient C++ implementation by exploiting this exposed data-level parallelism. Furthermore, our Green-Marl compiler applies a set of optimizations that take advantage of the high-level semantic knowledge encoded in the Green-Marl DSL. We demonstrate that graph analysis algorithms can be written very intuitively with Green-Marl through some examples, and our experimental results show that the compiler-generated implementation out of such descriptions performs as well as or better than highly-tuned hand-coded implementations.

Publisher

Association for Computing Machinery (ACM)

Reference38 articles.

1. Green-marl lanaguage specification. http://ppl.stanford.edu/main/green_marl.html. Green-marl lanaguage specification. http://ppl.stanford.edu/main/green_marl.html.

2. Pagerank c+ implementation. http://code.grnet.gr/projects/pagerank. Pagerank c+ implementation. http://code.grnet.gr/projects/pagerank.

3. Strongly connected component (kosaraju) java implementation. http://www.keithschwarz.com/interesting/. Strongly connected component (kosaraju) java implementation. http://www.keithschwarz.com/interesting/.

4. Scalable Graph Exploration on Multicore Processors

5. Better benchmarking for supercomputers

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GraphZero;ACM SIGOPS Operating Systems Review;2021-06-02

2. GraphPEG;ACM Transactions on Architecture and Code Optimization;2021-06

3. GPOP;ACM Transactions on Parallel Computing;2020-04-02

4. A DSL-Based Framework for Performance Assessment;Learning and Analytics in Intelligent Systems;2019-12-01

5. HyPar: A divide-and-conquer model for hybrid CPU–GPU graph processing;Journal of Parallel and Distributed Computing;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3