Source routing and scheduling in packet networks

Author:

Andrews Matthew1,Fernández Antonio2,Goel Ashish3,Zhang Lisa1

Affiliation:

1. Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey

2. LADyR, GSyC, Universidad Rey Juan Carlos, Madrid, Spain

3. Department of Management Science and Engineering and (by courtesy) Department of Computer Science, Stanford University, Stanford, California

Abstract

We study routing and scheduling in packet-switched networks. We assume an adversary that controls the injection time, source, and destination for each packet injected. A set of paths for these packets is admissible if no link in the network is overloaded. We present the first on-line routing algorithm that finds a set of admissible paths whenever this is feasible. Our algorithm calculates a path for each packet as soon as it is injected at its source using a simple shortest path computation. The length of a link reflects its current congestion. We also show how our algorithm can be implemented under today's Internet routing paradigms.When the paths are known (either given by the adversary or computed as above), our goal is to schedule the packets along the given paths so that the packets experience small end-to-end delays. The best previous delay bounds for deterministic and distributed scheduling protocols were exponential in the path length. In this article, we present the first deterministic and distributed scheduling protocol that guarantees a polynomial end-to-end delay for every packet.Finally, we discuss the effects of combining routing with scheduling. We first show that some unstable scheduling protocols remain unstable no matter how the paths are chosen. However, the freedom to choose paths can make a difference. For example, we show that a ring with parallel links is stable for all greedy scheduling protocols if paths are chosen intelligently, whereas this is not the case if the adversary specifies the paths.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maria Serna’s contributions to adversarial queuing theory;Computer Science Review;2021-02

2. Improved Deterministic Broadcasting for Multiple Access Channels;Advances in Intelligent Systems and Computing;2020

3. Packet latency of deterministic broadcasting in adversarial multiple access channels;Journal of Computer and System Sciences;2019-02

4. Optimal Local Buffer Management for Information Gathering with Adversarial Traffic;Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures;2017-07-24

5. Distance Vector-based Advance Reservation with Delay Performance Guarantees;Theory of Computing Systems;2015-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3