Universal-stability results and performance bounds for greedy contention-resolution protocols

Author:

Andrews Matthew1,Awerbuch Baruch2,Fernández Antonio3,Leighton Tom3,Liu Zhiyong3,Kleinberg Jon4

Affiliation:

1. Bell Labs, Lucent Technologies, Murray Hill, NJ

2. Johns Hopkins Univ., Baltimore, MD

3. Massachusetts Institute of Technology, Cambridge

4. Cornell Univ., Ithaca, NY

Abstract

In this paper, we analyze the behavior of packet-switched communication networks in which packets arrive dynamically at the nodes and are routed in discrete time steps across the edges. We focus on a basic adversarial model of packet arrival and path determination for which the time-averaged arrival rate of packets requiring the use of any edge is limited to be less than 1. This model can reflect the behavior of connection-oriented networks with transient connections (such as ATM networks) as well as connectionless networks (such as the Internet). We concentrate on greedy (also known as work-conserving) contention-resolution protocols. A crucial issue that arises in such a setting is that of stability —will the number of packets in the system remain bounded, as the system runs for an arbitrarily long period of time? We study the universal stability of network (i.e., stability under all greedy protocols) and universal stability of protocols (i.e., stability in all networks). Once the stability of a system is granted, we focus on the two main parameters that characterize its performance: maximum queue size required and maximum end-to-end delay experienced by any packet. Among other things, we show: (i) There exist simple greedy protocols that are stable for all networks. (ii) There exist other commonly used protocols (such as FIFO) and networks (such as arrays and hypercubes) that are not stable. (iii) The n -node ring is stable for all greedy routing protocols (with maximum queue-size and packet delay that is linear in n ). (iv) There exists a simple distributed randomized greedy protocol that is stable for all networks and requires only polynomial queue size and polynomial delay. Our results resolve several questions posed by Borodin et al., and provide the first examples of (i) a protocol that is stable for all networks, and (ii) a protocol that is not stable for all networks.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Impact of Asynchrony on Stability of MAC;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

2. Stable Scheduling in Transactional Memory;Lecture Notes in Computer Science;2023

3. Stable routing scheduling algorithms in multi-hop wireless networks;Theoretical Computer Science;2022-06

4. Optimal Control for Networks with Unobservable MaliciousNodes;ACM SIGMETRICS Performance Evaluation Review;2022-03-22

5. Optimal control for networks with unobservable malicious nodes;Performance Evaluation;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3