Dynamic type inference for gradual Hindley–Milner typing

Author:

Miyazaki Yusuke1,Sekiyama Taro2,Igarashi Atsushi1

Affiliation:

1. Kyoto University, Japan

2. National Institute of Informatics, Japan

Abstract

Garcia and Cimini study a type inference problem for the ITGL, an implicitly and gradually typed language with let-polymorphism, and develop a sound and complete inference algorithm for it. Soundness and completeness mean that, if the algorithm succeeds, the input term can be translated to a well-typed term of an explicitly typed blame calculus by cast insertion and vice versa. However, in general, there are many possible translations depending on how type variables that were left undecided by static type inference are instantiated with concrete static types. Worse, the translated terms may behave differently—some evaluate to values but others raise blame. In this paper, we propose and formalize a new blame calculus λ B DTI that avoids such divergence as an intermediate language for the ITGL. A main idea is to allow a term to contain type variables (that have not been instantiated during static type inference) and defer instantiation of these type variables to run time. We introduce dynamic type inference (DTI) into the semantics of λ B DTI so that type variables are instantiated along reduction. The DTI-based semantics not only avoids the divergence described above but also is sound and complete with respect to the semantics of fully instantiated terms in the following sense: if the evaluation of a term succeeds (i.e., terminates with a value) in the DTI-based semantics, then there is a fully instantiated version of the term that also succeeds in the explicitly typed blame calculus and vice versa. Finally, we prove the gradual guarantee, which is an important correctness criterion of a gradually typed language, for the ITGL.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SelfPiCo: Self-Guided Partial Code Execution with LLMs;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Space-Efficient Polymorphic Gradual Typing, Mostly Parametric;Proceedings of the ACM on Programming Languages;2024-06-20

3. Generating Python Type Annotations from Type Inference: How Far Are We?;ACM Transactions on Software Engineering and Methodology;2024-06-03

4. Type-Based Gradual Typing Performance Optimization;Proceedings of the ACM on Programming Languages;2024-01-05

5. Gradual Typing Performance, Micro Configurations and Macro Perspectives;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3