Theorems for free for free: parametricity, with and without types

Author:

Ahmed Amal1,Jamner Dustin1,Siek Jeremy G.2,Wadler Philip3

Affiliation:

1. Northeastern University, USA

2. Indiana University, USA

3. University of Edinburgh, UK

Abstract

The polymorphic blame calculus integrates static typing, including universal types, with dynamic typing. The primary challenge with this integration is preserving parametricity: even dynamically-typed code should satisfy it once it has been cast to a universal type. Ahmed et al. (2011) employ runtime type generation in the polymorphic blame calculus to preserve parametricity, but a proof that it does so has been elusive. Matthews and Ahmed (2008) gave a proof of parametricity for a closely related system that combines ML and Scheme, but later found a flaw in their proof. In this paper we present an improved version of the polymorphic blame calculus and we prove that it satisfies relational parametricity. The proof relies on a step-indexed Kripke logical relation. The step-indexing is required to make the logical relation well-defined in the case for the dynamic type. The possible worlds include the mapping of generated type names to their types and the mapping of type names to relations. We prove the Fundamental Property of this logical relation and that it is sound with respect to contextual equivalence. To demonstrate the utility of parametricity in the polymorphic blame calculus, we derive two free theorems.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dependently Typed Language with Dynamic Equality;Proceedings of the 8th ACM SIGPLAN International Workshop on Type-Driven Development;2023-08-30

2. GTP Benchmarks for Gradual Typing Performance;Proceedings of the 2023 ACM Conference on Reproducibility and Replicability;2023-06-27

3. Highly illogical, Kirk: spotting type mismatches in the large despite broken contracts, unsound types, and too many linters;Proceedings of the ACM on Programming Languages;2022-10-31

4. Gradual System F;Journal of the ACM;2022-10-28

5. Two Parametricities Versus Three Universal Types;ACM Transactions on Programming Languages and Systems;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3