Deformable object animation using reduced optimal control

Author:

Barbič Jernej1,da Silva Marco1,Popović Jovan2

Affiliation:

1. Massachusetts Institute of Technology

2. Massachusetts Institute of Technology and Adobe Systems Incorporated and University of Washington

Abstract

Keyframe animation is a common technique to generate animations of deformable characters and other soft bodies. With spline interpolation, however, it can be difficult to achieve secondary motion effects such as plausible dynamics when there are thousands of degrees of freedom to animate. Physical methods can provide more realism with less user effort, but it is challenging to apply them to quickly create specific animations that closely follow prescribed animator goals. We present a fast space-time optimization method to author physically based deformable object simulations that conform to animator-specified keyframes. We demonstrate our method with FEM deformable objects and mass-spring systems. Our method minimizes an objective function that penalizes the sum of keyframe deviations plus the deviation of the trajectory from physics. With existing methods, such minimizations operate in high dimensions, are slow, memory consuming, and prone to local minima. We demonstrate that significant computational speedups and robustness improvements can be achieved if the optimization problem is properly solved in a low-dimensional space. Selecting a low-dimensional space so that the intent of the animator is accommodated, and that at the same time space-time optimization is convergent and fast, is difficult. We present a method that generates a quality low-dimensional space using the given keyframes. It is then possible to find quality solutions to difficult space-time optimization problems robustly and in a manner of minutes.

Funder

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduced order modeling and model order reduction for continuum manipulators: an overview;Frontiers in Robotics and AI;2023-09-15

2. Physical Cyclic Animations;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2023-08-16

3. Two-Way Coupling of Skinning Transformations and Position Based Dynamics;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2023-08-16

4. DiffAqua;ACM Transactions on Graphics;2021-08-31

5. DiffAqua;ACM Transactions on Graphics;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3