Certification of bounds on expressions involving rounded operators

Author:

Daumas Marc1,Melquiond Guillaume2

Affiliation:

1. ELIAUS-UPVD, Perpignan cedex, France

2. LIP-CNRS-INRIA-ENS Lyon, Orsay Cedex, France

Abstract

Gappa is a tool designed to formally verify the correctness of numerical software and hardware. It uses interval arithmetic and forward error analysis to bound mathematical expressions that involve rounded as well as exact operators. It then generates a theorem and its proof for each verified enclosure. This proof can be automatically checked with a proof assistant, such as Coq or HOL Light. It relies on a large companion library of facts that we have developed. This Coq library provides theorems dealing with addition, multiplication, division, and square root, for both fixed- and floating-point arithmetics. Gappa uses multiple-precision dyadic fractions for the endpoints of intervals and performs forward error analysis on rounded operators when necessary. When asked, Gappa reports the best bounds it is able to reach for a given expression in a given context. This feature can be used to identify where the set of facts and automatic techniques implemented in Gappa becomes insufficient. Gappa handles seamlessly additional properties expressed as interval properties or rewriting rules in order to establish more intricate bounds. Recent work showed that Gappa is suited to discharge proof obligations generated for small pieces of software. They may be produced by third-party tools and the first applications of Gappa use proof obligations written by designers or obtained from traces of execution.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arfa: An Agile Regime-Based Floating-Point Optimization Approach for Rounding Errors;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Numerical Fuzz: A Type System for Rounding Error Analysis;Proceedings of the ACM on Programming Languages;2024-06-20

3. Floating-Point TVPI Abstract Domain;Proceedings of the ACM on Programming Languages;2024-06-20

4. Formally Verified Interval Arithmetic and Its Application to Program Verification;Proceedings of the 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering (FormaliSE);2024-04-14

5. A Holistic Approach to Automatic Mixed-Precision Code Generation and Tuning for Affine Programs;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3