Numerical Fuzz: A Type System for Rounding Error Analysis

Author:

Kellison Ariel E.1ORCID,Hsu Justin1ORCID

Affiliation:

1. Cornell University, Ithaca, USA

Abstract

Algorithms operating on real numbers are implemented as floating-point computations in practice, but floating-point operations introduce roundoff errors that can degrade the accuracy of the result. We propose Λ num , a functional programming language with a type system that can express quantitative bounds on roundoff error. Our type system combines a sensitivity analysis, enforced through a linear typing discipline, with a novel graded monad to track the accumulation of roundoff errors. We prove that our type system is sound by relating the denotational semantics of our language to the exact and floating-point operational semantics. To demonstrate our system, we instantiate Λ num with error metrics proposed in the numerical analysis literature and we show how to incorporate rounding operations that faithfully model aspects of the IEEE 754 floating-point standard. To show that Λ num can be a useful tool for automated error analysis, we develop a prototype implementation for Λ num that infers error bounds that are competitive with existing tools, while often running significantly faster. Finally, we consider semantic extensions of our graded monad to bound error under more complex rounding behaviors, such as non-deterministic and randomized rounding.

Funder

National Science Foundation

U.S. Department of Energy

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3