PLUS: A Semi-automated Pipeline for Fraud Detection in Public Bids

Author:

Brandão Michele A.1,Reis Arthur P. G.2,Mendes Bárbara M. A.2,de Almeida Clara A. Bacha2,Oliveira Gabriel P.2,Hott Henrique2,Gomide Larissa D.2,Costa Lucas L.2,Silva Mariana O.2,Lacerda Anisio2,Pappa Gisele L.2

Affiliation:

1. Instituto Federal de Minas Gerais, Brazil Universidade Federal de Minas Gerais, Brazil

2. Universidade Federal de Minas Gerais, Brazil

Abstract

The diversity of sources and formats of public bidding documents makes collecting, processing, and organizing such documents challenging from the point of view of data analysis. Thus, the development of approaches to deal with such data is relevant since the analysis of them allows to expand of the inclusion of people as they have more access to public decisions and expenditures, increase transparency in the public sector and give citizens a greater sense of responsibility for having different points of view on the government’s performance in meeting its public policy goals. In this context, we propose PLUS, a semi-automated pipeline for fraud detection in public bids. PLUS comprises a heuristic meta-classifier for bidding documents and a data quality module. Both modules present promising results after a proof of concept, reinforcing the relevance of PLUS for automating the bidding process investigation. Then, we present two applications of PLUS on real-world data: the construction of audit trails for fraud detection and a price database for overpricing detection. Such applications evidence a significant reduction of specialists’ work searching for irregularities in public bids.

Publisher

Association for Computing Machinery (ACM)

Subject

Public Administration,Software,Information Systems,Computer Science Applications,Computer Networks and Communications

Reference30 articles.

1. Miguel Arana-Catania , Felix-Anselm van Lier , Rob Procter , Nataliya Tkachenko , Yulan He , Arkaitz Zubiaga , and Maria Liakata . 2021. Citizen Participation and Machine Learning for a Better Democracy. Digit. Gov. Res. Pract. 2, 3 ( 2021 ), 27:1–27:22. https://doi.org/10.1145/3452118 10.1145/3452118 Miguel Arana-Catania, Felix-Anselm van Lier, Rob Procter, Nataliya Tkachenko, Yulan He, Arkaitz Zubiaga, and Maria Liakata. 2021. Citizen Participation and Machine Learning for a Better Democracy. Digit. Gov. Res. Pract. 2, 3 (2021), 27:1–27:22. https://doi.org/10.1145/3452118

2. An Overview of Data Quality Frameworks

3. Emilio Feliciano de Oliveira and Milene Selbach Silveira . 2018 . Open government data in Brazil a systematic review of its uses and issues . In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, DG.O 2018 , Delft, The Netherlands, May 30 - June 01, 2018, Marijn Janssen, Soon Ae Chun, and Vishanth Weerakkody (Eds.). ACM, 60:1–60:9. https://doi.org/10.1145/3209281.3209339 10.1145/3209281.3209339 Emilio Feliciano de Oliveira and Milene Selbach Silveira. 2018. Open government data in Brazil a systematic review of its uses and issues. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, DG.O 2018, Delft, The Netherlands, May 30 - June 01, 2018, Marijn Janssen, Soon Ae Chun, and Vishanth Weerakkody (Eds.). ACM, 60:1–60:9. https://doi.org/10.1145/3209281.3209339

4. Kellyton dos Santos Brito , Marcos Antônio da Silva Costa , Vinicius Cardoso Garcia , and Silvio Romero de Lemos Meira . 2014 . Experiences Integrating Heterogeneous Government Open Data Sources to Deliver Services and Promote Transparency in Brazil . In IEEE 38th Annual Computer Software and Applications Conference, COMPSAC 2014 , Vasteras, Sweden , July 21-25, 2014. IEEE Computer Society, 606–607. https://doi.org/10.1109/COMPSAC.2014.87 10.1109/COMPSAC.2014.87 Kellyton dos Santos Brito, Marcos Antônio da Silva Costa, Vinicius Cardoso Garcia, and Silvio Romero de Lemos Meira. 2014. Experiences Integrating Heterogeneous Government Open Data Sources to Deliver Services and Promote Transparency in Brazil. In IEEE 38th Annual Computer Software and Applications Conference, COMPSAC 2014, Vasteras, Sweden, July 21-25, 2014. IEEE Computer Society, 606–607. https://doi.org/10.1109/COMPSAC.2014.87

5. Harald Foidl , Michael Felderer , and Rudolf Ramler . 2022 . Data Smells: Categories, Causes and Consequences, and Detection of Suspicious Data in AI-based Systems. CoRR abs/2203.10384. https://doi.org/10.48550/arXiv.2203.10384 10.48550/arXiv.2203.10384 Harald Foidl, Michael Felderer, and Rudolf Ramler. 2022. Data Smells: Categories, Causes and Consequences, and Detection of Suspicious Data in AI-based Systems. CoRR abs/2203.10384. https://doi.org/10.48550/arXiv.2203.10384

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trilhas de Auditagem para Detecção de Fraudes Envolvendo Servidores Públicos da Saúde;Anais do XII Workshop de Computação Aplicada em Governo Eletrônico (WCGE 2024);2024-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3