Hierarchical neural reconstruction for path guiding using hybrid path and photon samples

Author:

Zhu Shilin1,Xu Zexiang2,Sun Tiancheng1,Kuznetsov Alexandr1,Meyer Mark3,Jensen Henrik Wann4,Su Hao1,Ramamoorthi Ravi1

Affiliation:

1. University of California San Diego

2. Adobe Research

3. Pixar Animation Studios

4. University of California San Diego and Luxion

Abstract

Path guiding is a promising technique to reduce the variance of path tracing. Although existing online path guiding algorithms can eventually learn good sampling distributions given a large amount of time and samples, the speed of learning becomes a major bottleneck. In this paper, we accelerate the learning of sampling distributions by training a light-weight neural network offline to reconstruct from sparse samples. Uniquely, we design our neural network to directly operate convolutions on a sparse quadtree, which regresses a high-quality hierarchical sampling distribution. Our approach can reconstruct reasonably accurate sampling distributions faster, allowing for efficient path guiding and rendering. In contrast to the recent offline neural path guiding techniques that reconstruct low-resolution 2D images for sampling, our novel hierarchical framework enables more fine-grained directional sampling with less memory usage, effectively advancing the practicality and efficiency of neural path guiding. In addition, we take advantage of hybrid bidirectional samples including both path samples and photons, as we have found this more robust to different light transport scenarios compared to using only one type of sample as in previous work. Experiments on diverse testing scenes demonstrate that our approach often improves rendering results with better visual quality and lower errors. Our framework can also provide the proper balance of speed, memory cost, and robustness.

Funder

UC San Diego Center for Visual Computing

NSF

Google Ph.D. Fellowships

Ronald L. Graham Chair

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference55 articles.

1. Kernel-predicting convolutional networks for denoising Monte Carlo renderings

2. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

3. LLC Blend Swap. 2016. Blend swap. LLC Blend Swap. 2016. Blend swap.

4. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3