Serial Arithmetic Strategies for Improving FPGA Throughput

Author:

Landy Aaron1ORCID,Stitt Greg1

Affiliation:

1. University of Florida, Gainesville, FL

Abstract

Serial arithmetic has been shown to offer attractive advantages in area for field-programmable gate array (FPGA) datapaths but suffers from a significant reduction in throughput compared to traditional bit-parallel designs. In this work, we perform a performance and trade-off analysis that counterintuitively shows that, despite the decreased throughput of individual serial operators, replication of serial arithmetic can provide a 2.1 × average increase in throughput compared to bit-parallel pipelines for common FPGA applications. We complement this analysis with a novel SerDes architecture that enables existing FPGA pipelines to be replaced with serial logic with potentially higher throughput. We also present a serialized sliding-window architecture that improves average throughput 2.4 × compared to existing bit-parallel work.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference37 articles.

1. H. Charych and S. Chattopadhya. 1992. Serial-to-parallel and parallel-to-serial converter. Retrieved March 3 2017 from http://www.google.com/patents/US5134702. US Patent 5 134 702. H. Charych and S. Chattopadhya. 1992. Serial-to-parallel and parallel-to-serial converter. Retrieved March 3 2017 from http://www.google.com/patents/US5134702. US Patent 5 134 702.

2. An 0(n) Parallel Multiplier with Bit-Sequential Input and Output

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPGA Processor In Memory Architectures (PIMs): Overlay or Overhaul ?;2023 33rd International Conference on Field-Programmable Logic and Applications (FPL);2023-09-04

2. Introduction;Application-Specific Arithmetic;2023-08-23

3. CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration;ACM Transactions on Reconfigurable Technology and Systems;2023-07-27

4. CoMeFa: Compute-in-Memory Blocks for FPGAs;2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM);2022-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3