MemGuard

Author:

Chen Long1,Zhang Zhao1

Affiliation:

1. Iowa State University, Iowa, USA

Abstract

Memory system reliability is increasingly a concern as memory cell density and capacity continue to grow. The conventional approach is to use redundant memory bits for error detection and correction, with significant storage, cost and power overheads. In this paper, we propose a novel, system-level scheme called MemGuard for memory error detection. With OS-based checkpointing, it is also able to recover program execution from memory errors. The memory error detection of MemGuard is motivated by memory integrity verification using log hashes. It is much stronger than SECDED in error detection, incurs negligible hardware cost and energy overhead and no storage overhead, and is compatible with various memory organizations. It may play the role of ECC memory in consumer-level computers and mobile devices, without the shortcomings of ECC memory. In server computers, it may complement SECDED ECC or Chipkill Correct by providing even stronger error detectio We have comprehensively investigated and evaluated the feasibility and reliability of MemGuard. We show that using an incremental multiset hash function and a non-cryptographic hash function, the performance and energy overheads of Mem- Guard are negligible. We use the mathematical deduction and synthetic simulation to prove that MemGuard is robust and reliable.

Funder

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CoMeT: Count-Min-Sketch-based Row Tracking to Mitigate RowHammer at Low Cost;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

2. CSI:Rowhammer – Cryptographic Security and Integrity against Rowhammer;2023 IEEE Symposium on Security and Privacy (SP);2023-05

3. Addressing multiple bit/symbol errors in DRAM subsystem;PeerJ Computer Science;2021-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3