Single-graph multiple flows

Author:

Voitsechov Dani1,Etsion Yoav2

Affiliation:

1. Electrical Engineering - Israel Institute of Technology

2. Electrical Engineering and Computer Science Technion - Israel Institute of Technology

Abstract

We present the single-graph multiple-flows (SGMF) architecture that combines coarse-grain reconfigurable computing with dynamic dataflow to deliver massive thread-level parallelism. The CUDA-compatible SGMF architecture is positioned as an energy efficient design alternative for GPGPUs. The architecture maps a compute kernel, represented as a dataflow graph, onto a coarse-grain reconfigurable fabric composed of a grid of interconnected functional units. Each unit dynamically schedules instances of the same static instruction originating from different CUDA threads. The dynamically scheduled functional units enable streaming the data of multiple threads (or graph flows, in SGMF parlance) through the grid. The combination of statically mapped instructions and direct communication between functional units obviate the need for a full instruction pipeline and a centralized register file, whose energy overheads burden GPGPU We show that the SGMF architecture delivers performance comparable to that of contemporary GPGPUs while consuming 57% less energy on average.

Funder

Seventh Framework Programme

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference43 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circular Reconfigurable Parallel Processor for Edge Computing : Industrial Product ✶;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

2. Flip : Data-centric Edge CGRA Accelerator;ACM Transactions on Design Automation of Electronic Systems;2023-12-18

3. GEM: Ultra-Efficient Near-Memory Reconfigurable Acceleration for Read Mapping by Dividing and Predictive Scattering;IEEE Transactions on Parallel and Distributed Systems;2023-12

4. FLEX: Introducing FLEXible Execution on CGRA with Spatio-Temporal Vector Dataflow;2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD);2023-10-28

5. Pipestitch: An energy-minimal dataflow architecture with lightweight threads;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3