Unrolling Ternary Neural Networks

Author:

Tridgell Stephen1ORCID,Kumm Martin2,Hardieck Martin3,Boland David1,Moss Duncan1,Zipf Peter3,Leong Philip H. W.1

Affiliation:

1. The University of Sydney, NSW, Australia

2. Fulda University of Applied Sciences, Fulda, Germany

3. University of Kassel, Kassel, Germany

Abstract

The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori , that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.

Funder

Australia?Germany Joint Research Co?operation Scheme

CMCRC scholarship

German Academic Exchange Service

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Latency Variational Autoencoder on FPGAs;IEEE Journal on Emerging and Selected Topics in Circuits and Systems;2024-06

2. Efficient Hardware Design of DNN for RF Signal Modulation Recognition Employing Ternary Weights;IEEE Access;2024

3. Arithmetic for Deep Learning;Application-Specific Arithmetic;2023-08-23

4. Resource-Efficient Convolutional Networks: A Survey on Model-, Arithmetic-, and Implementation-Level Techniques;ACM Computing Surveys;2023-07-13

5. Quantized Neural Network Synthesis for Direct Logic Circuit Implementation;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3