EM-X-DL: Efficient Cross-device Deep Learning Side-channel Attack With Noisy EM Signatures

Author:

Danial Josef1ORCID,Das Debayan1,Golder Anupam2,Ghosh Santosh3,Raychowdhury Arijit2,Sen Shreyas1

Affiliation:

1. Purdue University, West Lafayette, Indiana, USA

2. Georgia Institute of Technology, Atlanta, Georgia, USA

3. Intel Corporation, Hillsboro, Oregon, USA

Abstract

This work presents a Cross-device Deep-Learning based Electromagnetic (EM-X-DL) side-channel analysis (SCA) on AES-128, in the presence of a significantly lower signal-to-noise ratio (SNR) compared to previous works. Using a novel algorithm to intelligently select multiple training devices and proper choice of hyperparameters, the proposed 256-class deep neural network (DNN) can be trained efficiently utilizing pre-processing techniques like PCA, LDA, and FFT on measurements from the target encryption engine running on an 8-bit Atmel microcontroller. In this way, EM-X-DL achieves >90% single-trace attack accuracy. Finally, an efficient end-to-end SCA leakage detection and attack framework using EM-X-DL demonstrates high confidence of an attacker with <20 averaged EM traces.

Funder

National Science Foundation

Intel Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Domain‐Adaptive Power Profiling Analysis Strategy for the Metaverse;International Journal of Network Management;2024-07-10

2. SNOW-SCA: ML-Assisted Side-Channel Attack on SNOW-V;2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST);2024-05-06

3. TinyPower: Side-Channel Attacks with Tiny Neural Networks;2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST);2024-05-06

4. Ensuring cross-device portability of electromagnetic side-channel analysis for digital forensics;Forensic Science International: Digital Investigation;2024-03

5. Era of Sentinel Tech: Charting Hardware Security Landscapes Through Post-Silicon Innovation, Threat Mitigation and Future Trajectories;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3