Domain‐Adaptive Power Profiling Analysis Strategy for the Metaverse

Author:

Li Xiang1,Yang Ning1,Liu Weifeng2,Chen Aidong34,Zhang Yanlong5,Wang Shuo5,Zhou Jing5

Affiliation:

1. Beijing Key Laboratory of Information Service Engineering Beijing Union University Beijing China

2. Institute of Semiconductors Chinese Academy of Sciences Beijing China

3. College of Robotics Beijing Union University Beijing China

4. Research Center for Multi‐Intelligent Systems Beijing Union University Beijing China

5. Information System Laboratory, Beijing Microelectronics Technology Institution Beijing China

Abstract

ABSTRACTIn the surge of the digital era, the metaverse, as a groundbreaking concept, has become a focal point in the technology sector. It is reshaping human work and life patterns, carving out a new realm of virtual and real interaction. However, the rapid development of the metaverse brings along novel challenges in security and privacy. In this multifaceted and complex technological environment, data protection is of paramount importance. The innovative capabilities of high‐end devices and functions in the metaverse, owing to advanced integrated circuit technology, face unique threats from side‐channel analysis (SCA), potentially leading to breaches in user privacy. Addressing the issue of domain differences caused by different hardware devices, which impact the generalizability of the analysis model and the accuracy of analysis, this paper proposes a strategy of portability power profiling analysis (PPPA). Combining domain adaptation and deep learning techniques, it models and calibrates the domain differences between the profiling and target devices, enhancing the model's adaptability in different device environments. Experiments show that our method can recover the correct key with as few as 389 power traces, effectively recovering keys across different devices. This paper underscores the effectiveness of cross‐device SCA, focusing on the adaptability and robustness of analysis models in different hardware environments, thereby enhancing the security of user data privacy in the metaverse environment.

Funder

National Basic Research Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3