Social Question Answering

Author:

Molino Piero1,Aiello Luca Maria2,Lops Pasquale3

Affiliation:

1. IBM Watson, NY, USA

2. Yahoo Labs London, UK

3. Universitá degli Studi di Bari Aldo Moro, Italy

Abstract

Community question answering (CQA) sites use a collaborative paradigm to satisfy complex information needs. Although the task of matching questions to their best answers has been tackled for more than a decade, the social question-answering practice is a complex process. The factors influencing the accuracy of question-answer matching are many and hard to disentangle. We approach the task from an application-oriented perspective, probing the space of several dimensions relevant to this problem: features, algorithms, and topics. We gather under a learning to rank framework the most extensive feature set used in literature to date, including 225 features from five different families. We test the power of such features in predicting the best answer to a question on the largest dataset from Yahoo Answers used for this task so far (40M answers) and provide a faceted analysis of the results along different topical areas and question types. We propose a novel family of distributional semantics measures that most of the time can seamlessly replace widely used linguistic similarity features, being more than one order of magnitude faster to compute and providing greater predictive power. The best feature set reaches an improvement between 11% and 26% in P@1 compared to recent well-established state-of-the-art methods.

Funder

Ministry of Science and Innovation of Spain

SocialSensor project

European Community's Seventh Framework Programme

Spanish Centre for the Development of Industrial Technology under the CENIT program

(http://www.cenitsocialmedia.es) “Social Media”

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3