A novel word-graph-based query rewriting method for question answering

Author:

Yan RongenORCID,Dang DepengORCID,Gao HuORCID,Wu Yan,Yu Wenhui

Abstract

PurposeQuestion answering (QA) answers the questions asked by people in the form of natural language. In the QA, due to the subjectivity of users, the questions they query have different expressions, which increases the difficulty of text retrieval. Therefore, the purpose of this paper is to explore new query rewriting method for QA that integrates multiple related questions (RQs) to form an optimal question. Moreover, it is important to generate a new dataset of the original query (OQ) with multiple RQs.Design/methodology/approachThis study collects a new dataset SQuAD_extend by crawling the QA community and uses word-graph to model the collected OQs. Next, Beam search finds the best path to get the best question. To deeply represent the features of the question, pretrained model BERT is used to model sentences.FindingsThe experimental results show three outstanding findings. (1) The quality of the answers is better after adding the RQs of the OQs. (2) The word-graph that is used to model the problem and choose the optimal path is conducive to finding the best question. (3) Finally, BERT can deeply characterize the semantics of the exact problem.Originality/valueThe proposed method can use word-graph to construct multiple questions and select the optimal path for rewriting the question, and the quality of answers is better than the baseline. In practice, the research results can help guide users to clarify their query intentions and finally achieve the best answer.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference52 articles.

1. Learning to find answers to questions on the web;ACM Transactions on Internet Technology (TOIT),2004

2. Query expansion techniques for information retrieval: a survey;Information Processing & Management,2019

3. Sentence fusion for multidocument news summarization;Computational Linguistics,2005

4. Finding the right facts in the crowd: factoid question answering over social media,2008

5. An interface for annotating science questions,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3