Affiliation:
1. University of Windsor, Canada
2. Shanghai Normal University, Shanghai, China
Abstract
The problem of online selection of monocular view sequences for an arbitrary task in a calibrated multi-camera network is investigated. An objective function for the quality of a view sequence is derived from a novel task-oriented, model-based instantaneous coverage quality criterion and a criterion of the smoothness of view transitions over time. The former is quantified by a priori information about the camera system, environment, and task generally available in the target application class. The latter is derived from qualitative definitions of undesirable transition effects. A scalable online algorithm with robust suboptimal performance is presented based on this objective function. Experimental results demonstrate the performance of the method—and therefore the criteria—as well as its robustness to several identified sources of nonsmoothness.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献