Multimodal analytics to study collaborative problem solving in pair programming

Author:

Grover Shuchi1,Bienkowski Marie1,Tamrakar Amir2,Siddiquie Behjat2,Salter David2,Divakaran Ajay2

Affiliation:

1. SRI International, Menlo Park, CA

2. SRI International, Princeton, NJ

Publisher

ACM Press

Reference8 articles.

1. Amer, Mohamed R., et al. 2015. Human Social Interaction Modeling Using Temporal Deep Networks.arXiv preprint arXiv:1505.02137(2015).

2. Astrachan, O., & Briggs, A. (2012). The CS principles project.ACM Inroads,3(2), 38--42.

3. Hannay, J. E., Dybå, T., Arisholm, E., & Sjøberg, D. I. 2009. The effectiveness of pair programming: A meta-analysis.Information and Software Technology,51(7), 1110--1122.

4. Hesse, F., Care, E., Buder, J., Sassenberg, K., & Griffin, P. 2015. A framework for teachable collaborative problem solving skills. InAssessment and teaching of 21st century skills(pp. 37--56). Springer Netherlands.

5. McDowell, C. et al. 2006. Pair programming improves student retention, confidence, and program quality.Communications of the ACM,49(8), 90--95.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Education through Multimodal Learning Analytics and AI-as-a-Service;2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON);2023-12-05

2. How to Build More Generalizable Models for Collaboration Quality? Lessons Learned from Exploring Multi-Context Audio-Log Datasets using Multimodal Learning Analytics;LAK23: 13th International Learning Analytics and Knowledge Conference;2023-03-13

3. Impact of window size on the generalizability of collaboration quality estimation models developed using Multimodal Learning Analytics;LAK23: 13th International Learning Analytics and Knowledge Conference;2023-03-13

4. Measuring Collaboration Quality Through Audio Data and Learning Analytics;Advances in Analytics for Learning and Teaching;2023

5. Computing Education Research in Schools;Past, Present and Future of Computing Education Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3