Affiliation:
1. University of Arizona, Tucson, AZ
Abstract
Significant research has demonstrated the performance and power benefits of runtime dynamic reconfiguration of FPGAs and microprocessor/FPGA devices. For dynamically reconfigurable systems, in which the selection of hardware coprocessors to implement within the FPGA is determined at runtime, online estimation methods are needed to evaluate the performance and power consumption impact of the hardware coprocessor selection. In this paper, we present a profile assisted online system-level performance and power estimation framework for estimating the speedup and power consumption of dynamically reconfigurable embedded systems. We evaluate the accuracy and fidelity of our online estimation framework for dynamic hardware kernel selection to maximize performance or minimize the system power consumption.
Funder
Division of Computer and Network Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献