Automatic generation of efficient accelerators for reconfigurable hardware

Author:

Koeplinger David1,Delimitrou Christina2,Prabhakar Raghu1,Kozyrakis Christos3,Zhang Yaqi1,Olukotun Kunle1

Affiliation:

1. Stanford University

2. Stanford University and Cornell University

3. Stanford University, EPFL

Abstract

Acceleration in the form of customized datapaths offer large performance and energy improvements over general purpose processors. Reconfigurable fabrics such as FPGAs are gaining popularity for use in implementing application-specific accelerators, thereby increasing the importance of having good high-level FPGA design tools. However, current tools for targeting FPGAs offer inadequate support for high-level programming, resource estimation, and rapid and automatic design space exploration. We describe a design framework that addresses these challenges. We introduce a new representation of hardware using parameterized templates that captures locality and parallelism information at multiple levels of nesting. This representation is designed to be automatically generated from high-level languages based on parallel patterns. We describe a hybrid area estimation technique which uses template-level models and design-level artificial neural networks to account for effects from hardware place-and-route tools, including routing overheads, register and block RAM duplication, and LUT packing. Our runtime estimation accounts for off-chip memory accesses. We use our estimation capabilities to rapidly explore a large space of designs across tile sizes, parallelization factors, and optional coarse-grained pipelining, all at multiple loop levels. We show that estimates average 4.8% error for logic resources, 6.1% error for runtimes, and are 279 to 6533 times faster than a commercial high-level synthesis tool. We compare the best-performing designs to optimized CPU code running on a server-grade 6 core processor and show speedups of up to 16.7×.

Publisher

Association for Computing Machinery (ACM)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3