A Simpler and Faster Strongly Polynomial Algorithm for Generalized Flow Maximization

Author:

Olver Neil1ORCID,Végh László A.2

Affiliation:

1. London School of Economics and Political Science, United Kingdom and CWI, The Netherlands

2. London School of Economics and Political Science, London, United Kingdom

Abstract

We present a new strongly polynomial algorithm for generalized flow maximization that is significantly simpler and faster than the previous strongly polynomial algorithm [34]. For the uncapacitated problem formulation, the complexity bound O ( mn ( m + n log n )log ( n 2 / m )) improves on the previous estimate by almost a factor O ( n 2 ). Even for small numerical parameter values, our running time bound is comparable to the best weakly polynomial algorithms. The key new technical idea is relaxing the primal feasibility conditions. This allows us to work almost exclusively with integral flows, in contrast to all previous algorithms for the problem.

Funder

Engineering and Physical Sciences Research Council

European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3