Layered construction for deformable animated characters

Author:

Chadwick J. E.1,Haumann D. R.1,Parent R. E.1

Affiliation:

1. The Ohio Supercomputer Graphics Project, The Advanced Computing Center for the Arts and Design, The Department of Computer and Information Science, The Ohio State University

Abstract

A methodology is proposed for creating and animating computer generated characters which combines recent research advances in robotics, physically based modeling and geometric modeling. The control points of geometric modeling deformations are constrained by an underlying articulated robotics skeleton. These deformations are tailored by the animator and act as a muscle layer to provide automatic squash and stretch behavior of the surface geometry. A hierarchy of composite deformations provides the animator with a multi-layered approach to defining both local and global transition of the character's shape. The muscle deformations determine the resulting geometric surface of the character. This approach provides independent representation of articulation from surface geometry, supports higher level motion control based on various computational models, as well as a consistent, uniform character representation which can be tuned and tweaked by the animator to meet very precise expressive qualities. A prototype system (Critter) currently under development demonstrates research results towards layered construction of deformable animated characters.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey on Hand-Based Haptic Interaction for Virtual Reality;IEEE Transactions on Haptics;2023-04

2. State‐of‐the‐art improvements and applications of position based dynamics;Computer Animation and Virtual Worlds;2023-02-17

3. Interactive modelling of volumetric musculoskeletal anatomy;ACM Transactions on Graphics;2021-08-31

4. Elastic Simulation of Joints with Particle-Based Fluid;Applied Sciences;2021-07-27

5. ERGOBOSS: Ergonomic Optimization of Body-Supporting Surfaces;IEEE Transactions on Visualization and Computer Graphics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3